telecom • networking • design

an EventHelix.com blog


1 Comment

Long Term Evolution (LTE) Tutorials

Here are a few hand picked links to LTE tutorials. Click here for the complete list.

LTE video tutorial

LTE video presentations

LTE physical layer

OFDM and SC-FDMA Signal Chains

LTE link layer design

data flow through PDCP, RLC, MAC and PHY layers of LTE

This article describes the LTE link-layer protocols, which abstract the physical layer and adapt its characteristics to match the requirements of higher layer protocols.The LTE link-layer protocols are optimized for low delay and low overhead and are simpler than their counterparts in UTRAN. The state -of-the-art LTE protocol design is the result of a careful crosslayer approach where the protocols interact with each other efficiently. This article provides a thorough overview of this protocol stack, including the sub-layers and corresponding interactions in between them, in a manner that is more intuitive than in the respective 3GPP specifications.

Introduction to LTE Architecture


This article provides an overview of the LTE radio interface, together with a more in-depth description of its features such as spectrum flexibility, multi-antenna transmission, and inter-cell interference control. The performance of LTE and some of its key features is illustrated with simulation results.

This article provides a high-level overview of LTE and some of its key components: spectrum flexibility, multi-antenna transmission, and ICIC. Numerical simulations are used to show the performance of the first release of LTE, as well as assess the benefit of the key features. Indeed these contribute strongly to LTE meeting its performance targets. An outlook of the evolution of LTE toward LTE-Advanced and full IMT-Advanced capabilities complete the article. Clearly, LTE offers highly competitive performance and provides a good foundation for further evolution.

LTE Protocol Stack

Click here for a more LTE tutorials that cover the entire spectrum of LTE development.


Leave a comment

LTE X2 Handover Sequence Diagrams

Let’s examine the X2 Handover in detail. We look at the X2 handover signaling procedure through sequence diagrams that focus on different aspects of the procedure.

The sequence diagrams presented here were generated with EventStudio System Designer.

LTE X2 Handover

Full signaling details are presented here.

Overview

Now we examine the same flow at a higher level of abstraction. The diagram focuses on the interactions between the mobile, eNodeBs and the MME/SGW.

UE Interactions

We now explore the signaling procedures that involve the UE.

Source eNodeB Role

Examine the interactions that involve the eNodeB that initiated the handover.

Target eNodeB Role

We now look at the interactions involving the eNodeB that will be serving the UE after the handover.

RRC Signaling the X2 Handover

The Radio Resource Control (RRC) signaling between the UE and the eNodeBs is covered here.

X2AP Signaling Between eNodeBs

X2AP is used for signaling between the eNodeBs. Here we examine the X2AP interactions.

Data Path Changes During an X2 Handover

The data path switching goes through several steps to accomplish a seamless handover.


Leave a comment

LTE X2 Handover Between eNodeBs Served by the same MME

LTE eNodeBs can directly communicate with other eNodeBs on the X2 interface. The X2 interface is used to perform a handover between eNodeB.

The messaging in X2 handover is detailed in LTE X2 Handover Presentation. A few excerpts from the presentation as shown below.

X2 Handover Sequence Diagram

The X2 handover flow is shown in the following sequence diagram:

Figure 1 X2 Handover Sequence Diagram

Handover Preparation

The handover procedure is triggered by the X2AP Handover Request message. The RABs to be handover over are sent from the source eNodeB to the target eNodeB.

Figure 2X2AP Handover Request

The target eNodeB then admits the user and responds with X2AP Handover Request Acknowledge message. This message contains a transparent container that carries the Handover Command message that needs to be sent to the UE.

Figure 3 X2AP Handover Request Acknowledge

The source eNodeB sends the handover command to the UE. It then sends sequence number information to the target eNodeB.

The target eNodeB then requests the MME to switch the path from the source eNodeB to target eNodeB.

Handover Execution

Figure 4 S1AP Path Switch Request

This was an overview of the messaging involved in the X2 handover. For details refer to the LTE X2 Handover Presentation.


Leave a comment

IMS subscriber to PSTN subscriber call flow

IP Multimedia Subsystem is an IP based signaling system for setting up and tearing down multimedia sessions. SIP based signaling is used to setup these sessions.

We have covered call flows for an IMS to IMS and PSTN to IMS calls. We now look at the call flow for a IMS to PSTN subscriber call.

The call is routed via the BGCF (Border Gateway Control Function) to the MGCF (Media Gateway Control Function). The MGCF uses one context with two terminations in IM-MGW (Media Gateway). The termination RTP1 is used towards IMS Core network subsystem entity and the bearer termination TDM1 is used for bearer towards PSTN CS network element.

The call flow is complex and it is analyzed with multiple diagrams. Some of the diagrams are presented here:

IMS to PSTN sequence diagram

A detailed call flow describing all message interactions in a IMS to PSTN call

IMS to PSTN high level flow

A high level view that abstracts out individual component details and just presents the flow between the UE, IMS Core and the PSTN.

IMS to PSTN UE collaboration diagram

Here we examine the call flow from the UE point of view. The call flow is represented as a collaboration diagram.

Link: IMS subscriber to PSTN subscriber call flow

All documents:


1 Comment

PSTN subscriber to IMS subscriber call flow

IP Multimedia Subsystem is the new IP based signaling system for setting up multimedia sessions. We have already covered the call flow for an IMS subscriber calling another IMS subscriber. Here we will look at the call flow of a regular PSTN subscriber calling an IMS user.

PSTN to IMS call flow

PSTN subscriber to IMS subscriber call flow

This call flow covers the handling of a CS network originated call with ISUP. In the diagram the MGCF requests seizure of the IM CN subsystem side termination and CS network side bearer termination. When the MGCF receives an answer indication, it requests the IM-MGW to both-way through-connect the terminations. Originating and terminating end initiated call releases are also covered.

The following sequence is covered:

  1. ISUP IAM Handling and Initial IM-MGW and MGCF (Mn) Interactions
  2. Initial Handshake between MGCF and IMS CSCF Servers
  3. Mn Interactions for Codec selection
  4. ISUP ACM related interactions on Mn interface
  5. IMS Answer to ISUP ANM Handling
  6. Conversation Mode
  7. Call Release:
    • Calling PSTN Subscriber Initiated Call Release
    • Called Subsciber Initiates Call Release

Link: PSTN subscriber to IMS call flows

Focus on different aspects of the call flow

PSTN to IMS call is a very complex flow. The main sequence flow is supplemented with flows that focus on a particular aspect of the flow. A snapshot of one such diagrams is shown here:PSTN subscriber to IMS subscriber - Terminating S-CSCF interactions

Link: PSTN subscriber to IMS call flows