telecom • networking • design

an EventHelix.com blog


1 Comment

Long Term Evolution (LTE) Tutorials

Here are a few hand picked links to LTE tutorials. Click here for the complete list.

LTE video tutorial

LTE video presentations

LTE physical layer

OFDM and SC-FDMA Signal Chains

LTE link layer design

data flow through PDCP, RLC, MAC and PHY layers of LTE

This article describes the LTE link-layer protocols, which abstract the physical layer and adapt its characteristics to match the requirements of higher layer protocols.The LTE link-layer protocols are optimized for low delay and low overhead and are simpler than their counterparts in UTRAN. The state -of-the-art LTE protocol design is the result of a careful crosslayer approach where the protocols interact with each other efficiently. This article provides a thorough overview of this protocol stack, including the sub-layers and corresponding interactions in between them, in a manner that is more intuitive than in the respective 3GPP specifications.

Introduction to LTE Architecture


This article provides an overview of the LTE radio interface, together with a more in-depth description of its features such as spectrum flexibility, multi-antenna transmission, and inter-cell interference control. The performance of LTE and some of its key features is illustrated with simulation results.

This article provides a high-level overview of LTE and some of its key components: spectrum flexibility, multi-antenna transmission, and ICIC. Numerical simulations are used to show the performance of the first release of LTE, as well as assess the benefit of the key features. Indeed these contribute strongly to LTE meeting its performance targets. An outlook of the evolution of LTE toward LTE-Advanced and full IMT-Advanced capabilities complete the article. Clearly, LTE offers highly competitive performance and provides a good foundation for further evolution.

LTE Protocol Stack

Click here for a more LTE tutorials that cover the entire spectrum of LTE development.


Leave a comment

LTE X2 Handover Between eNodeBs Served by the same MME

LTE eNodeBs can directly communicate with other eNodeBs on the X2 interface. The X2 interface is used to perform a handover between eNodeB.

The messaging in X2 handover is detailed in LTE X2 Handover Presentation. A few excerpts from the presentation as shown below.

X2 Handover Sequence Diagram

The X2 handover flow is shown in the following sequence diagram:

Figure 1 X2 Handover Sequence Diagram

Handover Preparation

The handover procedure is triggered by the X2AP Handover Request message. The RABs to be handover over are sent from the source eNodeB to the target eNodeB.

Figure 2X2AP Handover Request

The target eNodeB then admits the user and responds with X2AP Handover Request Acknowledge message. This message contains a transparent container that carries the Handover Command message that needs to be sent to the UE.

Figure 3 X2AP Handover Request Acknowledge

The source eNodeB sends the handover command to the UE. It then sends sequence number information to the target eNodeB.

The target eNodeB then requests the MME to switch the path from the source eNodeB to target eNodeB.

Handover Execution

Figure 4 S1AP Path Switch Request

This was an overview of the messaging involved in the X2 handover. For details refer to the LTE X2 Handover Presentation.


Leave a comment

3GPP LTE PDCP Layer Presentation

LTE PDPCP Layer Presentation

The PDCP layer in LTE performs the following functions:

  • Transfer of upper layer PDUs;
  • Error correction through ARQ (only for AM data transfer)
  • Concatenation, segmentation and reassembly of RLC SDUs (UM and AM)
  • Re-segmentation of RLC data PDUs (AM)
  • Reordering of RLC data PDUs (UM and AM);
  • Duplicate detection (UM and AM);
  • RLC SDU discard (UM and AM)
  • RLC re-establishment
  • Protocol error detection and recovery

3GPP LTE PDCP presentation